Truncations of random unitary matrices
نویسندگان
چکیده
We analyse properties of non-Hermitian matrices of size M constructed as square submatrices of unitary (orthogonal) random matrices of size N > M , distributed according to the Haar measure. In this way we define ensembles of random matrices and study the statistical properties of the spectrum located inside the unit circle. In the limit of large matrices, this ensemble is characterized by the ratio M/N . For the truncated CUE we analytically derive the joint density of eigenvalues and all correlation functions. In the strongly non-unitary case universal Ginibre behaviour is found. For N −M fixed and N to∞ the universal resonance-width distribution with N −M open channels is recovered.
منابع مشابه
Truncations of Random Unitary Matrices and Young Tableaux
Let U be a matrix chosen randomly, with respect to Haar measure, from the unitary group U(d). For any k ≤ d, and any k × k submatrix Uk of U, we express the average value of |Tr(Uk)| as a sum over partitions of n with at most k rows whose terms count certain standard and semistandard Young tableaux. We combine our formula with a variant of the Colour-Flavour Transformation of lattice gauge theo...
متن کاملLocal Spectrum of Truncations of Kronecker Products of Haar Distributed Unitary Matrices
We address the local spectral behavior of the random matrix Π1U ⊗kΠ2U ⊗k∗Π1, where U is a Haar distributed unitary matrix of size n×n, the factor k is at most c0 logn for a small constant c0 > 0, and Π1,Π2 are arbitrary projections on l n k 2 of ranks proportional to n. We prove that in this setting the k-fold Kronecker product behaves similarly to the well-studied case when k = 1. AMS Subject ...
متن کاملMeasures on the unit circle and unitary truncations of unitary operators
In this paper we obtain new results about the orthogonality measure of orthogonal polynomials on the unit circle, through the study of unitary truncations of the corresponding unitary multiplication operator, and the use of the five-diagonal representation of this operator. Unitary truncations on subspaces with finite co-dimension give information about the derived set of the support of the mea...
متن کاملTruncations of a Random Unitary Matrix and Young Tableaux
Abstract. Let U be a matrix chosen randomly, with respect to Haar measure, from the unitary group U(d). We express the moments of the trace of any submatrix of U as a sum over partitions whose terms count certain standard and semistandard Young tableaux. Using this combinatorial interpretation, we obtain a simple closed form for the moments of an individual entry of a random unitary matrix and ...
متن کاملDynamical Correlations for Circular Ensembles of Random Matrices
Circular Brownian motion models of random matrices were introduced by Dyson and describe the parametric eigenparameter correlations of unitary random matrices. For symmetric unitary, self-dual quaternion unitary and an analogue of antisymmetric hermitian matrix initial conditions, Brownian dynamics toward the unitary symmetry is analyzed. The dynamical correlation functions of arbitrary number ...
متن کامل